Electro-Thermal Co-Design of High-Power Semiconductor Devices

Jungwan Cho, Ph.D.

Associate Professor School of Mechanical Engineering Sungkyunkwan University (SKKU)

2025.07.03

Next-Generation Power Semiconductors: WBG Gallium Nitride (GaN) & UWBG Gallium Oxide (Ga₂O₃)

* WBG: Wide Bandgap ** UWBG: Ultrawide Bandgap

Better SWaP and Efficiency

Thermal Challenges in WBG GaN Electronics: Device Self-Heating Limits Electrical Performance

* HEMTs: High-electron-mobility transistors

Thermal Challenges in UWBG Ga₂O₃ Electronics: Low Thermal Conductivity Aggravates Device Self-Heating

** HEMTs: High-electron-mobility transistors

AND BAR SUNCERSITY

Device Self-Heating Compromises Device Reliability & Long-Term Sustainability

Device-Level Thermal Management Solutions: DARPA Drives NJTT, ICECool, and THREADS...

Electro-Thermal Co-Design Techniques are Necessary to Overcome Device Overheating & Reliability Concerns

1. Junction temperature measurement

Device thermal imaging : Sub-μm resolution optical thermography (e.g., Raman, thermoreflectance imaging)

2. Device-level thermal property measurement

- Laser-based pump-probe thermoreflectance
- Epitaxial film thermal conductivity, film/substrate thermal boundary resistance (TBR)

3. Electro-thermal co-modeling

- Thermal/electronic transport
- Energy conversion (heat generation)
- Electrical output characteristics
- Device self-heating behavior

- Low thermal resistance composite substrate for bottom-side cooling
- High thermal conductivity capping overlayer for top-side cooling
- Embedded microfluidic cooling close to the heat source

Electro-Thermal Co-Design: A *Design for Sustainability* Paradigm

1. Junction temperature measurement

 Device thermal imaging : Sub-μm resolution optical thermography (e.g., Raman, thermoreflectance imaging)

2. Device-level thermal property measurement

- Laser-based pump-probe thermoreflectance
- Epitaxial film thermal conductivity, film/substrate thermal boundary resistance (TBR)

3. Electro-thermal co-modeling

- Thermal/electronic transport
- Energy conversion (heat generation)
- Electrical output characteristics
- Device self-heating behavior

- Low thermal resistance composite substrate for bottom-side cooling
- High thermal conductivity capping overlayer for top-side cooling
- Embedded microfluidic cooling close to the heat source

Electro-Thermal Co-Design: A *Design for Sustainability* Paradigm

- **1. Junction temperature measurement**
- Device thermal imaging : Sub-µm resolution optical thermography (e.g., Raman, thermoreflectance imaging)

2. Device-level thermal property measurement

- Laser-based pump-probe thermoreflectance
- Epitaxial film thermal conductivity, film/substrate thermal boundary resistance (TBR)

3. Electro-thermal co-modeling

- Thermal/electronic transport
- Energy conversion (heat generation)
- Electrical output characteristics
- Device self-heating behavior

- Low thermal resistance composite substrate for bottom-side cooling
- High thermal conductivity capping overlayer for top-side cooling
- Embedded microfluidic cooling close to the heat source

HUNDS BURNERSITY

Key Methodology: Electro-Thermal Co-modeling

Electrical Modeling of WBG GaN Devices

Electrical Modeling of UWBG Ga₂O₃ Devices

Design Considerations for Device-Level Thermal Management of WBG GaN Devices via Substrate Integration

Top-Side Capping Layer can Lower Device Temperatures in WBG GaN Devices

Impact of Ga₂O₃ Layer Thickness and Anisotropic Thermal Conductivity on Ga₂O₃-on-Diamond Devices

T. Kim, S. Park, C. Song, H. Lee, and <u>J. Cho</u>,* International Journal of Heat and Mass Transfer (2022)

Electro-Thermal Co-Design: A *Design for Sustainability* Paradigm

- **1. Junction temperature measurement**
- Device thermal imaging : Sub-µm resolution optical thermography (e.g., Raman, thermoreflectance imaging)

2. Device-level thermal property measurement

- Laser-based pump-probe thermoreflectance
- Epitaxial film thermal conductivity, film/substrate thermal boundary resistance (TBR)
- **3. Electro-thermal co-modeling**
- Thermal/electronic transport
- Energy conversion (heat generation)
- Electrical output characteristics
- Device self-heating behavior

- Low thermal resistance composite substrate for bottom-side cooling
- High thermal conductivity capping overlayer for top-side cooling
- Embedded microfluidic cooling close to the heat source

Key Methodology: Pump-Probe Thermoreflectance

Key Methodology: Pump-Probe Thermoreflectance

Thermoreflectance Regime Map

Depth Resolution

- Time-Domain Thermoreflectance (TDTR): a few nm to a few μm
- Frequency-Domain Thermoreflectance (FDTR): a few nm to tens of μm
- Steady-State Thermoreflectance (SSTR) : a few μm to tens of μm

Heterogeneous Integration for Power Semiconductors: Heteroepitaxial vs. Bonded Architectures

J. Cho, K. E. Goodson et al., PRB (2014) N. Nepal, S. Graham et al., JVST A (2020)

- Creation of lateral power devices via MOCVD, MBE, HVPE, etc.
- Necessitated by the lack of bulk substrates, particularly for GaN (e.g., GaN-on-Si, GaN-on-SiC)
- Can introduce interfaces with defects and complex interfaces within the device

Z. Cheng, S. Graham et al., ACS AMI (2020a) Z. Cheng, S. Graham et al., ACS AMI (2020b)

- Bonding methods: Surface-activated bonding (SAB), fusion bonding, etc.
- Allows for heterointegration that cannot be performed by heteroepitaxy
- Amorphous adhesive interlayers and interfacial defects can result in high TBR at bonded interfaces

- WBG and UWBG semiconductors hold strong potential for future power and RF electronics, but thermal bottlenecks limit not only device performance but also reliability and long-term sustainability.
- Electro-thermal co-design is essential for mitigating device overheating and improving device reliability.
- Such co-design approaches are central to 'sustainability by design,' enabling reduced energy loss, lower cooling costs at the package and system levels, and extended device lifetimes.
- Manufacturing for heterogeneous integration will be a key enabler of future WBG and UWBG technologies, with thermal metrology playing a critical validation role.

- National Research Foundation of Korea (No. RS-2024-00411577 and No. RS-2025-00516018)
- Samsung Research Funding & Incubation Center for Future Technology
- Collaborators:
 - Stanford: Prof. Kenneth Goodson, Prof. Mehdi Asheghi
 - Penn State: Sukwon Choi
 - Univ. of Pittsburgh: Prof. Sangyeop Lee
 - Yonsei Univ.: Prof. Jungwoo Oh
 - Hongik Univ.: Prof. Sangyeon Pak
 - Chung-Ang Univ.: Prof. Hyoungsoon Lee
 - Korea Institute of Ceramic Engineering and Technology: Dr. Dae-Woo Jeon